
	INDIAN	SCHOOL AL WADI AL KABIR		
Class: XII	Department: S	SCIENCE (BIOLOGY) 2023-2024	Date:05/11/2023	
Worksheet No: 9	UNIT: BIOTE	ECHNOLOGY	Note: A4 FILE FORMAT	
NAME OF THE STUDENT		CLASS & SEC:	ROLL NO.	

CASE STUDY

1.PCR stands for Polymerase Chain Reaction. In this reaction, multiple copies of the gene (or DNA) of interest is synthesised *in vitro*. using two sets of primers. If the process of replication of DNA is repeated many times, the segment of DNA can be amplified to approximately billion times, i.e., 1 billion copies are made. The figure given below shows the steps of this technique.

- a) Name the steps as marked A, B, C in the figure.
- b) What are the substrates used in this process.
- c) What are primers and what is their function in this process.

Or

- c) What is Taq polymerase and what is its function in this process.
- 2. The foundations of recombinant DNA (rDNA) were laid by the discovery of restriction enzymes. These enzymes are present in many bacteria where they function as a part of their

defense mechanism called the Restriction Modification system (RM system). Molecular basis of this system was explained first by Werner Arber in 1962. A restriction enzyme (called restriction endonuclease) identifies the introduced foreign DNA and cuts it into pieces.

The second component is a modification enzyme (methylase) that adds a methyl group to DNA at specific site to protect it from the restriction enzyme cleavage.

- a) Which of the following is the first discovered restriction endonuclease?
- i. Sal I
- ii. EcoRI
- iii. Hind II
- iv. EcoRII
- b) The restriction enzymes play an important role in rDNA technology-give reason.
- c) With an example illustrate the nomenclature of naming the restriction enzyme.

Or

What is palindrome sequence, give an example?

MULTIPLE CHOICE QUESTIONS

- 1. C-peptide of human insulin is:
 - (a) A part of mature insulin molecule
 - (b) Responsible for formation of disulfide bridges
 - (c) Removed during maturation of pro-insulin to insulin
 - (d) Responsible for its biological activity.
- 2. GEAC stands for:
 - (a) Genome Engineering Action Committee
 - (b) Ground Environment Action Committee
 - (c) Genetic Engineering Approval Committee
 - (d) Genetic and Environment Approval committee
- 3. α -1 antitrypsin is:
 - (a) An antacid
 - (b) An enzyme
 - (c) Used to treat arthritis
 - (d) Used to treat emphysema
- 4. Choose the correct option regarding Retrovirus:
 - (a) An RNA virus that can synthesize DNA during infection
 - (b) A DNA virus that can synthesize RNA during infection
 - (c) A ssDNA virus
 - (d) A dsRNA virus
- 5. The site of production of ADA in the body is:
 - (a) Bone marrow
 - (b) Lymphocytes
 - (c) Blood plasma
 - (d) Monocytes
- 6. The trigger for activation of toxin of *Bacillus thuringiensis* is:

- (a) Acidic pH of stomach
- (b) High temperature
- (c) Alkaline pH of gut
- (d) Mechanical action in the insect gut
- 7. In RNAi, genes are silenced using:
 - (a) ss DNA
 - (b) ds DNA
 - (c) ds RNA
 - (d) ss RNA
- 8. Bt cotton is not:
 - (a) A GM plant
 - (b) Insect resistant
 - (c) A bacterial gene expressing system
 - (d) Resistant to all pesticides
- 9. An enzyme catalyzing the removal of nucleotides from the ends of DNA is:
 - (a) Endonuclease
 - (b) Exonuclease
 - (c) DNA ligase
 - (d) Hind II
- 10. Which of the given statement is correct in the context of observing DNA separated by agarose gel electrophoresis?
 - (a) DNA can be seen in visible light
 - (b) DNA can be seen without staining in visible light
 - (c) Ethidium bromide stained DNA can be seen in visible light
 - (d) Ethidium bromide stained DNA can be seen under exposure to UV light
- 11. The most important feature in a plasmid to be used as a vector is:
 - (a) Origin of replication (ori)
 - (b) Presence of a selectable marker
 - (c) Presence of sites for restriction endonuclease
 - (d) Its size
- 12. Bacteria protect themselves from viruses by fragmenting viral DNA with
 - (a) Ligase
 - (b) Endonuclease
 - (c) Exonuclease
 - (d) Gyrase
- 13. Southern blotting is
 - (a) Attachment of probes to DNA fragments
 - (b) Transfer of DNA fragments from electrophoretic gel to nitrocellulose sheet
 - (c) Comparison of DNA fragments
 - (d) Transfer of DNA fragments to electrophoretic gel from cellulose membrane
- 14. Plasmids are used as cloning vectors for which of the following reasons?
 - (a) Can be multiplied in culture

- (b) Self-replication in bacterial cells
- (c) Can be multiplied in laboratories with the help of enzymes
- (d) Replicate freely outside bacterial cells

15. RNA interference helps in

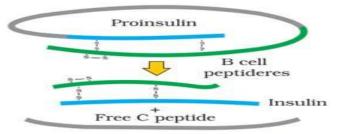
- (a) Cell proliferation
- (b) Micropropagation
- (c) Cell defense
- (d) Cell differentiation

TWO MARKS QUESTIONS

- 1. Why is a thermostable DNA polymerase needed in amplification in genetic engineering?
- 2. Name the method in which foreign DNA is directly introduced into host cell.
- 3. In bacterial culture some of the colonies produce blue colour in the presence of a chromogenic substrate and some did not due to the presence or absence of an insert (rDNA) in the coding sequence of the beta- galactosidase.
 - a) Mention the mechanism
 - b) How is it better than the technique of plating on two plates having different antibiotics?
- 4. Why are engineered vectors preferred by biotechnologists for transferring the desired genes into another organism?
- 5. Dr. Arun developed a vitamin A rich potato through his research on genetics.
 - a) What do you call such potato plants?
 - b) Who can approve the validity and safety of introducing potato for public uses?

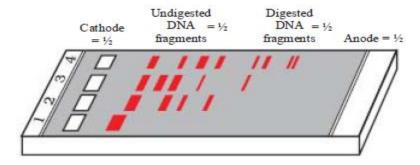
THREE MARKS QUESTIONS

- 1. Draw the diagram of pBR322 vector showing restriction sites
- 2. Give diagrammatic representation of rDNA technology
- 3. How is the gene z (for B-galactosidase) used as marker?
- 4. State the principle underlying gel electrophoresis and mention two applications of this technique in Biotechnology.
- 5. Explain the work carried out by Cohen and Boyer that contributed immensely to biotechnology.


FIVE MARKS QUESTIONS

- 1. Any recombinant DNA with a desired gene is required in billion copies for commercial use. How is the amplification done? Explain.
- 2. Giving suitable examples describe the roles of recombinant technology in agriculture

3. Give a brief description about the large-scale production of recombinant protein. What is the role of bioreactor in the production? Draw neat labelled diagrams of any two types of bioreactors.


PREVIOUS BOARD QUESTIONS

- 1. (a) Why are restriction endonucleases so called?
 - (b) What is palindromic nucleotide sequence? How do restriction endonucleases act on palindromic sites, to create sticky ends?
- 2. (a) Name the technique used for the separation of DNA fragments.
 - (b) Write the type of matrix used in this technique.
 - (c) How is the separated DNA visualized and extracted for use in rDNA technology.
- 3. Some cotton plants grown by farmers are known as 'Bt cotton'.
 - a) What does Bt stand for?
 - b) What is the advantage of this cotton plant?
 - c) How did scientists achieve this?
- 4. A method to prevent infestation of a nematode *Meloidegyne incognitia* on roots of tobacco is silencing the specific mRNA. What is the scientific name of the technique? How is this performed by dsRNA?
- 5. Describe briefly the production of humulin.
- 6. Identify the following image. Give its importance in rDNA technology.

What you mean by humulin? Give its uses.

- 7. Give the different roles played by transgenic animals. What is the importance of GEAC in the production of transgenic organisms?
- 8. Observe the given figure and answer the questions

(a) Identify the process and give its principle

- (b) Why DNA is moving to anode?
- (c) Identify the smallest and largest DNA fragments.

SECTION A (1 mark each)							
1-C	2-C	3-D	4-A	5-B			
6-C	7-C	8-D	9-B	10-D			
11-A	12-B	13-B	14-B	15-B			
SECTION B							
1. (Hints: Mention the high temperature used in PCR and the name of the							
enzyme)							
2. (Hints: Mention the process involved in Microinjection)							
3.(Hints: (a) – Insertional inactivation; (b) The second method is a							
cumbersome process as it requires simultaneous plating on two plates							
having two different antibiotics)							
· ·	-		_	oreign DNA and selection of	2		
recombinants from non-recombinants)							
	s: (a) Tran	sgenic pla	nt (b) GE	ZAC)	2		
SECTIO	SECTION D						
1. (Hints: PCR – Explanation, steps, importance, figure)							
		_		d steps in the production of Bt plants	3		
and pest resistant tobacco plants)							
3. (Hints: Largescale production by bioreactors, importance of							
bioreactors, types of bioreactors)							
PREVIOUS BOARD QUESTIONS							
1. (Hints: (a) restricts the growth of bacteriophage and mention the							
endonuclease activity (b) Action of RE - EcoRI))							
2. (Hints: (a) Electrophoresis, (b) Agarose gel (c) staining by ethidium							
bromide and exposure under UV rays)							
3. (Hints: (a) Bacillus thuringiensis (b) insect resistant (c) steps in the							
production of Bt plants)							
4. (Hints: RNA interference, steps in RNAi)							
5. (Hints: Explanation of Insertion of 'A' and 'B' genes into separate							
E.coli, Isolation of 'A' and 'B' polypeptides, joining with Disulfide Bridge)							
6. (Hints: Maturation of Insulin, importance, insulin produced by							
transgenic <i>E.coli</i> , uses of Humulin)							
7. (Hints: Examples and the functions of different transgenic animals,							
Roles of GEAC)							
8. (Hints: (a) Electrophoresis and its principle, (b) DNA is negatively							
charged, (c) smallest – the one which is close to anode)							

PREPARED BY Ms AGNES ARANHA | CHECKED BY HOD SCIENCE